Publications

For a complete list of publications refer to Zhang's CV or Google Scholar page. Code/Pipelines can be found in his GitHub website.

2025

A. Ackerman, Z. Zhang, J. Hannig, J. Prothero, J.S. Marron [2025]. Multifaceted Neuroimaging Data Integration via Analysis of Subspaces. Psychometrika.
R. Liu, Z. Zhang, H. Won, S. Marron [2025]. Significance in Scale Space for Hi-C Data. Bioinformatics.

2024

W. Dai, Z. Zhang, P. Song, H. Zhang, Y. Zhao [2024]. Heritability and genetic contribution analysis of structural-functional coupling in human brain. Imaging Neuroscience.
A. Turnbull, F.V. Lin, Z. Zhang [2024]. Issues of parcellation in the calculation of structure–function coupling. Nature Reviews Neuroscience.
Y. Zhang, M. Liu, Z. Zhang, D. Dunson [2024]. Motion-Invariant Variational Auto-Encoding of Brain Structural Connectomes. Imaging Neuroscience.
A. Allen, Z. Zhang, A Nobel [2024]. CoCoNest: A Continuous Structural Connectivity-based Nested Parcellation of the Human Cerebral Cortex. Network Neuroscience.
W. Consagra, M. Cole, X. Qiu and Z. Zhang [2024]. Continuous and Atlas-free Analysis of Brain Structural Connectivity. Annals of Applied Statistics.

2023

A. Roy, Z. Lan, Z. Zhang [2023]. Nonparametric Modeling of Diffusion MRI Signal in Q-Space. Data Science in Science.
L. L. Duan, Z. Yuwen, G. Michailidis, Z. Zhang [2023]. Low Tree-Rank Bayesian Vector Autoregression Models. Journal of Machine Learning Research.
D. Li, P. Nguyen, Z. Zhang, D. Dunson [2023]. Tree Representations of Brain Structural Connectivity via Persistent Homology. Frontiers in Neuroscience, Brain Imaging Methods.
Y. Zhao, C. Chang, J. Zhang, Z. Zhang [2023]. Genetic underpinnings of brain structural connectome for young adults. Journal of the American Statistical Association.

2022

Y. Li, G. Mateos, Z. Zhang [2022]. Learning to Model the Relationship Between Brain Structural and Functional Connectomes. IEEE Transactions on Signal and Information Processing over Network.
Z. Zhang, Y. Wu, D. Xiong, J. G. Ibrahim, A. Srivastava, H. Zhu. [2022]. LESA: Longitudinal Elastic Shape Analysis of Brain Subcortical Structures. Journal of the American Statistical Association, accepted as a discussion paper.
P. Dey, Z. Zhang, D. Dunson. [2022]. Outlier Detection for Multi-Network Data. Bioinformatics.
Z. Zhang, B. Saparbayeva. [2022]. Amplitude Mean of Functional Data on S2 and its Accurate Computation. Journal of Mathematical Imaging and Vision.
Q. Chen, A. Turnbull, M. Cole, Z. Zhang, F. V. Lin. [2022]. Enhancing Cortical Network-Level participation Coefficient as a Potential Mechanism for Transfer in Cognitive Training in aMCI. NeuroImage.
W. Consagra, A. Venkataramana, Z. Zhang. [2022]. Optimized Diffusion Imaging for Brain Structural Connectome Analysis. IEEE Transactions on Medical Imaging, an earlier version won the runner-up award in the paper competition sponsored by the ASA Statistical Methods in Imaging Section.

2021

Z. Zhang, J. Gewandter, P. Geha. [2021]. Brain Imaging Biomarkers for Chronic Pain. Frontiers in Neurology.
M. Liu Z. Zhang, D. Dunson. [2021]. Graph Auto-Encoding Brain Networks with Applications to Analyzing Large-Scale Brain Imaging Datasets. NeuroImage. 245, 118750.
G. Papadogeorgou Z. Zhang, D. Dunson. [2021]. Soft Tensor Regression. Journal of Machine Learning Research. 22, 1-53.
L. Wang, Z. Zhang. [2021]. Classification of Longitudinal Brain Networks with an Application to Understanding Superior Aging. Stat. [in press].
M. Cole, K. Murray, E. St-Onge, B. Risk, J. Zhong, G. Schifitto, M. Descoteaux, Z. Zhang. [2021]. Surface-Based Connectivity Integration: An Atlas-Free Approach to Jointly Study Functional and Structural Connectivity. Human Brain Mapping. [in press].
B. Risk, R. Murden, J. Wu, M. Nebel, A. Venkataraman, Z. Zhang, D. Qiu. [2021]. Which Multiband Factor Should You Choose for Your Resting-State fMRI Study? NeuroImage. 234, 117965.
Z. Zhang, X. Wang, L. Kong, H. Zhu. [2021]. High-Dimensional Spatial Quantile Function-on-Scalar Regression. Journal of the American Statistical Association. [in press].
L. Wang, F. Lin, M. Cole, Z. Zhang. [2021]. Learning Clique Subgraphs in Structural Brain Network Classification with Application to Crystallized Cognition. NeuroImage. 225, 117493.
X. Wang, G. Zhu, J. Rhen, J. Pang, Z. Zhang. [2021]. Vessel Tech: A High-Accuracy Pipeline for Comprehensive Mouse Retinal Vasculature Characterization. Angiogenesis. 24, 7–11.

2019

M. Dai, Z. Zhang, A. Srivastava. [2019]. Analyzing Dynamical Brain Functional Connectivity As Trajectories on Space of Covariance Matrices. IEEE Transactions on Medical Imaging. 39.3, 611-620.
M. Dai, Z. Zhang, A. Srivastava. [2019]. Discovering Common Change-Point Patterns in Functional Connectivity Across Population. Medical Imaging Analysis. 58, 101532.
Z. Zhang G. Allen, H. Zhu, D. Dunson. [2019]. Tensor Network Factorizations: Relationships Between Brain Structural Connectomes and Traits. NeuroImage. 197, 330-343.
L. Wang, Z. Zhang, D. Dunson. [2019]. Symmetric Bilinear Regression for Signal Subgraph Estimation. IEEE Transactions on Signal Processing. 67.7, 1929-1940.
L. Wang, Z. Zhang, D. Dunson. [2019]. Common and Individual Structure of Brain Networks. Annals of Applied Statistics. 13.1, 85-112.
Z. Zhang, E. Klassen, A. Srivastava. [2019]. Robust Comparison of Kernel Densities on Spherical Domains. Sankhya A. 81.1,144-171.
Z. Zhang, M. Descoteaux, D. Dunson. [2019]. Nonparametric Bayes Models of Fiber Curves Connecting Brain Regions.. Journal of the American Statistical Association. 114:528, 1505-1517.

2018

Z. Zhang, J. Su, H. Le, E. Klassen, A. Srivastava. [2018]. Rate-Invariant Analysis of Covariance Trajectories. Journal of Mathematical Imaging and Vision. 60, 1306-1323.
Z. Zhang, M. Descoteaux, J. Zhang, D. Dunson, A. Srivastava, H. Zhu. [2018]. Mapping Population-based Structural Connectome. NeuroImage. 172, 130-145.
Z. Zhang, E. Klassen, A. Srivastava. [2018]. Phase-Amplitude Separation and Modeling of Spherical Trajectories. Journal of Computational and Graphical Statistics. 27.1, 85-97.

2015 and Earlier

Z. Zhang, D. Pati, A. Srivastava. [2015]. Bayesian Clustering of Shapes of Curves. Journal of Statistical Planning and Inference. 166, 171-186.
Z. Zhang, E. Klassen, A. Srivastava. [2013]. Gaussian Blurring-Invariant Comparison of Signals and Images. IEEE Transactions on Image Processing. 22.8, 3145-3157.
Z. Zhang, E. Klassen, A. Srivastava, P.K. Turaga, R. Chellappa. [2011]. Blurring-Invariant Riemannian Metrics for Comparing Signals and Images. International Conference on Computer Vision (ICCV). Barcelona, Spain.